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LETTER TO THE EDITOR 

Description of few-body systems via analytical continuation in 
coupling constant 

V I Kukulin and V M Krasnopol’sky 
Institute of Nuclear Physics, Moscow State University, Moscow 117234, USSR 

Received 19 November 1976 

Abstract. The method of analytical continuation using the Pad6 approximant technique in 
the total and partial coupling constants is described and illustrated with some examples. The 
method can be applied to calculate the characteristics of the loose near-threshold and 
few-body resonance states, in the case of the potential with a strong repulsive core etc. 

Many effective methods for studying the discrete spectrum of few-body systems with 
strong interaction have been developed including the various versions of perturbation 
theory, the Hartree-Fock method, the K-harmonic method, etc. Such methods (they 
will be referred to as the direct methods), however, are all effective in some region, 
whereas in other practically important cases (regions) the direct methods give slowly 
converging (or even diverging) expansions when, for example, a strong repulsive core 
(or other singularities) is present in the two-body potential and when one calculates the 
near-threshold and resonance states even in the case of smooth interaction potentials. 

In this letter we will present a method based on a very simple concept which makes it 
possible to use the results of calculations of the characteristics of the system in the 
region where a direct method is most effective to find the characteristics of the real 
system when the interaction potential includes singularities or when the state of interest 
is near the threshold (or is a few-body resonance). The method uses the numerical 
analytical continuation of the studied characteristics (level energies, electromagnetic 
form factors and matrix elements of various operators) in the total or partial coupling 
constant by means of the Pad6 approximant (PA) technique (Baker 1965). We assume 
that some ‘proper’ method exists to calculate directly the eigen-energy EA and 
corresponding eigenfunction qA at small coupling constant A (in this case the unper- 
turbed Hamiltonian Ho should include the smooth part of the interaction potential, and 
the singular part of the interaction, e.g. repulsive core, etc, should be taken as a 
perturbation A V). Then, this value may be extrapolated to A = 1 (or other necessary 
values of A )  on the basis of the PA PN(h) /QM(A)  of type I1 (Baker 1965) using several 
initial values of the characteristic of interest which are found at small A by a direct 
method. 

Such direct extrapolation, however, proves to be slowly converging in almost all 
cases (i.e., high accuracy requires high orders of N and M, see for example the data in 
columns 2 and 4 of table 2). The accurate result can be obtained (and this is of major 
importance in the proposed approach) only by taking into account the analytical 
properties of the values to be continued in the complex A plane, which (as it has been 
shown) just ensures an accurate and stable extrapolation. 
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In the two-body case, consideration of the analytical properties (behaviour of the 
binding energy &(A) near the two-body threshold) indicates that the wavevector 
K2(A) = (E,(A))”’ should be continued instead of the energy E,@) (this relates to the 
bound and virtual states and to the resonance). For many-body systems, already several 
nearest thresholds should be included, i.e. the Riemann surface should be made 
uniform. It is true that the singularities on the few-body thresholds have not been 
known well up to now and require a more sophisticated analysis. As is shown in 
Yndurain (1971), however, the PA converge even on the cuts and, therefore, a 
convergence although slower, should also occur if the few-body singularities are 
neglected. Our three- and four-body calculations (see below) show that quite accurate 
and stable results can already be obtained when only two-body thresholds are included. 

We now give some illustrative examples of our method. 

(i) Continuation in the coupling constant of the repulsive core 
Examples of two-, three-, and four-nucleon systems will be used to illustrate the Pad6 
extrapolation in the coupling constant of the repulsive core for the two-body NN 
potential SI (Afnan and Tang 1968) with a strong repulsive core of the order of 1 GeV 
height. 

( a )  Two-nucleon system, triplet. Table 1 presents the comparison of extrapolated 
results for the energy, root-mean square radius and the charge form factor F(q2)  with 
the accurate results?. It can be seen that to obtain an accurate extrapolation it is 
sufficient to know only several points at A S 0-1, i.e. at a core height of an order smaller 
than the true core; in this case the accuracy of the eventual result is only slightly worse 
than the accuracy of the initial data. 

Table 1. Two-nucleon system, S’ potential. 

System Two-nucleon, triplet Two-nucleon, 
singlet . 

Function to be 
ated K:  = JEi  RMS radius F(q2)  F(q2) K ;  = J E ;  

((MeV)’”) (fm) q2  = 1 fm-2 q2 = 2 fm-2 ((MeV)’”) 

1 1.39 3.74 0.215 -0.012 -1.18 
2 1.49 3.74 0.267 0.062 -0.171 
3 1.49 3.75 0.267 0.062 -0.370 

Value obtained 

calculations 

t Data presented for the diagonal PA [N, N] only. 
$The value found from the effective-range theory has been presented as the accurate value (see the text). 

in direct 1.49 3.76 0.278 0.065 -0.367$ 

( b )  Two-nucleon system, singlet. Table 1 shows the comparison between the 
extrapolated result for the singlet deuteron pole and the result obtained using the 
effective-range theory for the SI potential. An algorithm of direct calculations of the 

t Values obtained by directly solving the Schrodinger equation (using numerical or variational methods) 
are taken as the accurate results. 
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singlet pole position (avoiding the eff ective-range approximation) may prove to be 
fairly cumbersome. 

( c )  Ground stare of the three-nucleon system. It is convenient here to transform to 
the function K3(A) = (E3(A)-E2(A))l’* for which the PA is constructed (&(A) and 
E , @ )  are the two-body and three-body binding energies respectively). The results are 
presented in table 2 (the results of the direct extrapolation for the function E&) are 
presented for the sake of comparison). It can be seen that already the [l, 11 approxi- 
mant (A,,, = 0.1) gives fairly accurate values of the three-body energyt. 

Table 2. Three- and four-nucleon systems with S‘ potential. 

System Three-nucleon Four-nucleon 

Function to be 
E3 K3  = J(E3 - E*) E4 K~ = J ( E ,  - E ~ )  
(MeV) ((MeV)”’) (MeV) ((MeV)’”) 

0.60 2.727 10.6 4.40 
1.24 2.728 16.1 4.68 
3.57 2.728 19.2 4.74 
6.86 2.736 2 1 4  4.79 

Value obtained 
in direct 7.76 2.738 31.1 4.83 
calculations 

( d )  Ground state of 4He. This system already contains two two-body thresholds 
(3 + 1 and 2+2).  The results presented in table 2 show, however, that already the 
inclusion of the nearest threshold (4+ 3 + 1) makes it possible to obtain a sufficiently 
accurate value of the energy. It can be seen from figure 1 that in this case also the 
calculations at a value of the core of an order smaller than the true core (broken curve) 
make it possible to correctly represent the entire function &(A) accurate to within 
several per cent at A = 1. 

The results obtained (for the three- and four-nucleon systems) may be improved by 
taking into account the next thresholds (both two and two-body ones). 

(ii) Resonances as analytical continuations of the bound states 
The method developed may be also applied, without substantial alterations, to the study 
of two- and few-body resonances. In this case the continuation may be made in both 
partial (in the case of a singular interaction, as above) and total coupling constants. 
Since, however, the resonance wavefunction is strongly peripherized, the sensitivity of 
the resonance width and energy to the strength of, for example, the short-range core 
will be very weak and, therefore, the continuation is more convenient in either the total 
coupling constant or the constant of the main part of the interaction. 

The position of the two-body resonance pole in the lth partial wave is known to be 
determined by the complex zero K,(A) of the Jost function f , (K) and near the 

7 The initial three- and four-body energies at small A were calculated using the stochastic variational method 
proposed recently by Kukulin and Krasnopol’sky (1975). 
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Figure 1. Energy of the ground state of the four-nucleon system. The full curve represents 
the exact value of the function K4(A) = (E4(A)-E3(A))1’2. The broken curve is the PA 
KF”(A) = a/(l +bA) (constructed using two points &(A = 0) and &(A = 0.05)). The chain 
curve is the PA Kys’I(A) = (a  + M)/( 1 + C A )  (constructed using three points K4(A = 0), 
K4(A = 0.05) and &(A = 0.1)). The frame indicates the section of curve comprising the 
points on which both continuations have been constructed. 

threshold one can derive the expansion (Demkov and Ostrovsky 1975)t: 
1 

Kl(A) = 1 .djA’-; + 1 gjAiI2. 
j=l j =21  

The function & ( A )  given by the expansion (1) can be easily converted, using 
conventional techniques, into the PA. It should be noted only that near the threshold 
(A = 0) the inclusion of the leading term in (1) gives Kl(A) -A1”. 

We have applied the above resonance calculation method to the cycy resonances O+, 
2+, 4+, and 6’, amongst others. The well known Ali-Bodmer cycy potential (Ali and 
Bodmer 1966) was used as the potential model. The resonance parameters (the 
resonance energy ER and width r,) were found by calculating the bound-state energies 
in each partial wave at several values of the coupling constant Ai ; after that the PA were 
used to numerically continue the pole trajectory from bound states to the second energy 
sheet, and the actual resonance parameters were found at A = 1. In all the cases studied, 
quite accurate and numerically stable resonance parameters were found (see figure 2) 
which are in a good agreement with both experiment and values given by the R matrix 
analysis of the corresponding theoretical acy phase shifts. A similar approach can be 

t A similar expansion has been obtained by Kukulin and Krasnopol’sky (1976) using other techniques. 
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Figure 2. Positions of the m resonance poles with J" = O+, 2+, 4+ and 6+ (the O+ resonance 
is conveniently displayed in the top right-hand corner) on the second energy sheet at A = 1 
for the PA of different orders [N, M] (the approximant order is indicated in square brackets). 
The square means that all the subsequent PA give a resonance pole located inside this 
square. 

also applied to the analysis of few-body resonances and will be treated in detail in a 
subsequent publication. 

It may be said in conclusion that the method we have suggested of analytical 
continuation in the coupling constant using PA of the second kind is a very convenient 
and effective means for studying few-body systems. 
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